metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Samuel Robinson Jebas,^a Thailampillai Balasubramanian^b* and Mark E Light^c

^aDepartment of Electronics, St Joseph's College, Tiruchirappalli 620002, India, ^bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620015, India, and ^cSchool of Chemistry, University of Southampton, Highfield, SO17 1BJ, England

Correspondence e-mail: bala@nitt.edu

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.004 Å R factor = 0.028 wR factor = 0.119 Data-to-parameter ratio = 20.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(2-aminopyridinium) tetrachlorocobalt(II)

In the crystal structure of the title compound, $(C_5H_7N_2)_2$ -[CoCl₄], the Co^{II} ion is coordinated by four chloride ions. The Co atom lies on a crystallographic twofold rotation axis. The structure is stabilized by an extensive network of N-H···Cl hydrogen bonds.

Comment

2-Aminopyridine is used in the manufacture of pharmaceuticals, especially antihistaminic drugs (Windholz, 1976). As part of our investigation of the reactions of 2-aminopyridine with metals, we report here the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains a 2-aminopyridinium cation and half of a $[CoCl_4]^{2-}$ anion. The Co atom lies on a crystallographic twofold rotation axis. Protonation of atom N1 of the 2-aminopyridine results in the widening of the C2– N1–C6 angle to 122.7 (2)°. This compares with 117.7 (1)° in neutral 2-aminopyridine (Chao *et al.*, 1975). The bond lengths and angles in (I) are comparable to those in other 2-aminopyridinium complexes (Bis & Zaworotko, 2005; Smith *et al.*, 2000; Jebas & Balasubramanian, 2006). The pyridinium ring deviates somewhat from planarity, with a maximum deviation from the mean plane of 0.026 (2) Å for atom C6.

The anion exhibits tetrahedral geometry, with the Co^{II} ion surrounded by four Cl atoms, with Cl-Co-Cl angles ranging from 109.85 (4) to 115.98 (3)°. The mean Co-Cl bond length, 2.27 (7) Å, is close to those observed in similar complexes (Zhang *et al.*, 2005).

There are $N-H\cdots Cl$ hydrogen-bonding interactions between the cations and the anions (Table 2).

Experimental

Solutions of 2-aminopyridine and $CoCl_2 \cdot 2H_2O$ in water were mixed in a 1:1 molar ratio and heated at 363 K for 2 h. Blue crystals of (I) were obtained by slow evaporation over a period of one week.

© 2006 International Union of Crystallography

All rights reserved

Received 1 July 2006 Accepted 6 July 2006.

Crystal data

 $\begin{array}{l} (C_5H_7N_2)_2[\text{CoCl}_4] \\ M_r = 390.98 \\ \text{Monoclinic, } C2/c \\ a = 8.2152 \ (3) \text{ Å} \\ b = 14.0713 \ (5) \text{ Å} \\ c = 13.5731 \ (5) \text{ Å} \\ \beta = 95.190 \ (2)^{\circ} \\ V = 1562.52 \ (10) \text{ Å}^3 \end{array}$

Data collection

Bruker–Nonius FR591 rotatinganode diffractometer φ and ω scans Absorption correction: multi-scan *SADABS* (Sheldrick, 2003) $T_{\min} = 0.595, T_{\max} = 0.701$ 8864 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0653P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.028$	+ 0.2962P]
$wR(F^2) = 0.119$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.26	$(\Delta/\sigma)_{\rm max} < 0.001$
1801 reflections	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
87 parameters	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Co-Cl2	2.2724 (7)	Co-Cl1	2.2755 (7)
C2-N1-C6	122.7 (2)	Cl2-Co-Cl2 ⁱ	109.85 (4)
Cl1-Co-Cl1 ⁱ	109.37 (4)	Cl2-Co-Cl1	115.98 (3)

Z = 4

 $D_x = 1.662 \text{ Mg m}^{-3}$

 $0.4 \times 0.25 \times 0.2 \text{ mm}$

3 standard reflections

every 60 reflections

intensity decay: none

1801 independent reflections

1488 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.77 \text{ mm}^{-1}$

T = 120 (2) K

Block, blue

 $R_{\rm int} = 0.032$

 $\theta_{\rm max} = 27.5^{\circ}$

Symmetry code: (i) -x, y, $-z + \frac{3}{2}$.

Table 2

		•	
Hydrogen-bond	geometry	(A,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N7-H2A\cdots Cl2^{ii}$	0.86	2.42	3.258 (2)	165
$N7-H2B\cdots Cl1^{iii}$	0.86	2.44	3.286 (2)	169
$N1-H1\cdots Cl1^{iv}$	0.86	2.58	3.275 (2)	139

Symmetry codes: (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $x, -y, z - \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Figure 1

The structure of (I), showing the atom-numbering scheme, with 50% probability displacement ellipsoids. The suffix a indicates the symmetry position $(-x, y, \frac{3}{2} - z)$.

H atoms were placed in calculated positions, with C-H = 0.93 Å and N-H = 0.86 Å, and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* (Sheldrick, 1997).

References

- Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.
- Chao, M., Schempp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924.
- Jebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209-o2211.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.

Smith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505–1506. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

- Windholz, M. (1976). The Merck Index. 9th Edition. Rahway, New Jersey, USA: Merck & Co., Inc.
- Zhang, H., Fang, L. & Yuan, R. (2005). Acta Cryst. E61, m677-m678.