Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Samuel Robinson Jebas, ${ }^{\text {a }}$ Thailampillai Balasubramanian ${ }^{\text {b }}$ and Mark E Light ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Electronics, St Joseph's College, Tiruchirappalli 620002, India, ${ }^{\text {b }}$ Department of Physics, National Institute of Technology, Tiruchirappalli 620015, India, and ${ }^{\text {c }}$ School of Chemistry, University of Southampton, Highfield, SO17 1BJ, England

Correspondence e-mail: bala@nitt.edu

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.028$
$w R$ factor $=0.119$
Data-to-parameter ratio $=20.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(2-aminopyridinium) tetrachlorocobalt(II)

In the crystal structure of the title compound, $\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{2^{-}}$ $\left[\mathrm{CoCl}_{4}\right]$, the $\mathrm{Co}^{\text {II }}$ ion is coordinated by four chloride ions. The Co atom lies on a crystallographic twofold rotation axis. The structure is stabilized by an extensive network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Comment

2-Aminopyridine is used in the manufacture of pharmaceuticals, especially antihistaminic drugs (Windholz, 1976). As part of our investigation of the reactions of 2-aminopyridine with metals, we report here the crystal structure of the title compound, (I).

(I)

The asymmetric unit of (I) contains a 2-aminopyridinium cation and half of a $\left[\mathrm{CoCl}_{4}\right]^{2-}$ anion. The Co atom lies on a crystallographic twofold rotation axis. Protonation of atom N1 of the 2-aminopyridine results in the widening of the $\mathrm{C} 2-$ N1 - C6 angle to 122.7 (2) ${ }^{\circ}$. This compares with 117.7 (1) ${ }^{\circ}$ in neutral 2-aminopyridine (Chao et al., 1975). The bond lengths and angles in (I) are comparable to those in other 2-aminopyridinium complexes (Bis \& Zaworotko, 2005; Smith et al., 2000; Jebas \& Balasubramanian, 2006). The pyridinium ring deviates somewhat from planarity, with a maximum deviation from the mean plane of 0.026 (2) \AA for atom C6.

The anion exhibits tetrahedral geometry, with the $\mathrm{Co}^{\mathrm{II}}$ ion surrounded by four Cl atoms, with $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ angles ranging from 109.85 (4) to 115.98 (3) ${ }^{\circ}$. The mean $\mathrm{Co}-\mathrm{Cl}$ bond length, 2.27 (7) \AA, is close to those observed in similar complexes (Zhang et al., 2005).

There are $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen-bonding interactions between the cations and the anions (Table 2).

Experimental

Solutions of 2-aminopyridine and $\mathrm{CoCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in water were mixed in a 1:1 molar ratio and heated at 363 K for 2 h . Blue crystals of (I) were obtained by slow evaporation over a period of one week.

Received 1 July 2006
Accepted 6 July 2006

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{CoCl}_{4}\right]$
$M_{r}=390.98$
Monoclinic, C2/c
$a=8.2152$ (3) \AA
$b=14.0713$ (5) A
$c=13.5731$ (5) \AA
$\beta=95.190(2)^{\circ}$
$V=1562.52(10) \AA^{3}$

Data collection

Bruker-Nonius FR591 rotating-
anode diffractometer
φ and ω scans
Absorption correction: multi-scan SADABS (Sheldrick, 2003)
$T_{\text {min }}=0.595, T_{\text {max }}=0.701$
8864 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.119$
$S=1.26$
1801 reflections
87 parameters
H -atom parameters constrained

$Z=4$

$D_{x}=1.662 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.77 \mathrm{~mm}^{-1}$
$T=120(2) \mathrm{K}$
Block, blue
$0.4 \times 0.25 \times 0.2 \mathrm{~mm}$

1801 independent reflections 1488 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=27.5^{\circ}$
3 standard reflections every 60 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0653 P)^{2}\right. \\
& +0.2962 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.57 \mathrm{e}_{\AA^{-3}} \\
& \begin{array}{l}
\Delta \rho_{\max }=0.57 \mathrm{e}^{2} \AA^{-3} \\
\Delta \rho_{\min }=-0.67 \mathrm{~A}^{-3}
\end{array}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co}-\mathrm{Cl} 2$	$2.2724(7)$	$\mathrm{Co}-\mathrm{Cl} 1$	$2.2755(7)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$122.7(2)$	$\mathrm{Cl} 2-\mathrm{Co}-\mathrm{Cl} 2^{\mathrm{i}}$	
$\mathrm{Cl} 1-\mathrm{Co}-\mathrm{Cl} 1^{\mathrm{i}}$	$109.37(4)$	$\mathrm{Cl} 2-\mathrm{Co}-\mathrm{Cl} 1$	$109.85(4)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N7-H2A $\cdots \mathrm{Cl}_{2}{ }^{\text {ii }}$	0.86	2.42	3.258 (2)	165
$\mathrm{N} 7-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Cl} 1^{\text {iii }}$	0.86	2.44	3.286 (2)	169
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\text {iv }}$	0.86	2.58	3.275 (2)	139

Figure 1

The structure of (I), showing the atom-numbering scheme, with 50% probability displacement ellipsoids. The suffix a indicates the symmetry position ($-x, y, \frac{3}{2}-z$).

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, N)$.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

References

Bis, J. A. \& Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.
Chao, M., Schempp, E. \& Rosenstein, R. D. (1975). Acta Cryst. B31, 29222924.

Jebas, S. R. \& Balasubramanian, T. (2006). Acta Cryst. E62, o2209-o2211.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Smith, G., Bott, R. C. \& Wermuth, U. D. (2000). Acta Cryst. C56, 1505-1506. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Windholz, M. (1976). The Merck Index. 9th Edition. Rahway, New Jersey, USA: Merck \& Co., Inc.
Zhang, H., Fang, L. \& Yuan, R. (2005). Acta Cryst. E61, m677-m678.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

